
1. HYBRID PARALEL MPI-PTHREAD 

RENDERING PERFORMANCE 
Rendering images in-situ requires access to a working OpenGL 

stack. Many HPC sites do not have GPUs available and of those 

that do many do not support running X11 on compute nodes 

which is required by many OpenGL drivers in order to create a 

rendering context. At HPC sites where GPUs are unavailable for 

rendering the Mesa OpenGL stack is often used. Mesa’s OS Mesa 

driver implements OpenGL in software and provides an OpenGL 

context without X11. In the Mesa 9.2.0 release1 the OS Mesa 

driver will be replaced by Mesa’s Gallium llvmpipe software 

rasterizer. The Gallium llvmpipe driver is threaded and uses 

LLVM for just-in-time(JIT) OpenGL GLSL shader compilation. 

In this section we investigate the threading performance of the 

new OS Mesa llvmpipe driver when rendering Surface LIC in 

parallel in order to identify the proper ratio of llvmlpipe rendering 

threads to MPI ranks per node. 

Figure 6:  Single node total rendering time of a 54M triangle 

surface as a function of two independent variables, MPI ranks 

and llvmpipe rendering threads. The results of all 256 run 

combinations are shown.  

 

The rendering benchmarks were run on Phase 1 of the Edison 

supercomputer, NERSC’s Cray XC30 Cascade system. Phase I 

Edison houses 664 compute nodes with each compute node 

equipped with two 8 core Xeon E5-2670 CPUs and 64GB of 

DDR3 ram. Because we are interested in determining reasonable 

choice of number of threads per MPI rank for in-situ rendering we 

focus on measuring single node rendering performance of our 

GPGPU Surface LIC implementation on a 54 million triangle 

simulation dataset using 10 thousand integration steps as we co-

vary the number of MPI ranks and rendering threads per rank each 

                                                                 

1 As of this writing Mesa 9.2.0 is not released. We used a 

checkout of Git sha 062317d6 obtained from Mesa’s Git repo 

hosted at freedesktop.org. 

up to the number of physical cores on the compute node. We have 

disabled Cray’s default CPU affinity binding and have enabled 

hyper-threading as some of the runs we made use more rendering 

threads than there are physical cores on the node. 

Figure 7:  Gant chart showing relative time each process spent 

in various stages of the Surface LIC algorithm for the run 

where 16 MPI ranks each with 16 rendering threads were 

used. 

Figure 8:  Relative times of each stage in the Surface LIC 

algorithm for a single MPI rank while the number of llvmpipe 

rendering threads is increased. 

Figure 6 shows the results of the 256 benchmark runs with the 

total single node rendering time plotted on a surface as a function 

of number of MPI ranks on the x-axis and number of threads per 

rank on the y-axis. The absolute fastest render time was attained 

by the run with 16 MPI ranks and 12 rendering threads per rank. 

The Gant chart in figure 7 shows, for the run where we used 16 

MPI ranks each with 16 threads, how each process spent its time 

relative to the other processes. The algorithm’s run time is 

dominated by the vertex processing and LIC computation stages. 

Time spent in inter-process communication during compositing 

and guard pixel exchange is a relatively small part of the whole 



run time while the remaining stages contribute a negligible 

amount of time to the overall result.  

Figure 9:  Relative times of each stage in the Surface LIC 

algorithm for rank 0 of the set of runs where the number of 

MPI ranks is varied while the number of llvmpipe rendering 

threads is fixed at 16 threads per rank. 

 

Figure 8 shows, for the set of runs where 1 MPI rank was 

employed and the number of rendering threads was varied, how 

the single process spent its time while rendering the surface LIC. 

This figure shows the speedup attributed to the llvmpipe driver’s 

threading. Note how as the number of rendering threads is 

increased the time spent computing the LIC decreases while the 

time spent in the vertex processing stage remains fairly constant. 

The important take away from this is that the llvmpipe driver's 

fragment pipeline is threaded while its vertex pipeline is not. This 

is an important factor in predicting the benefit of the driver’s 

threading for a given rendering algorithm. For algorithms where 

rendering time is dominated by vertex processing the threaded 

driver will likely result in little or no speedup. 

One interesting characteristic visible in figure 6 is that as we 

approach the fully oversubscribed case of 16 MPI ranks each with 

16 threads for a total of 256 rendering threads the overall 

rendering performance is not negatively impacted by the large 

ratio of rendering threads to cores. This case’s rendering time was 

within 0.5% of the fastest rendering time. 

Figure 9 shows, for the set of runs where the number of MPI ranks 

is varied with 16 rendering threads, how the MPI rank 0 process 

spent its time during rendering. The time spent in the LIC 

computation increases as the total number of rendering threads on 

the node is increased beyond 32 threads. We are simply running 

into the limits of the system’s processing power. The large ratio of 

threads to physical cores on the node employed during this set of 

runs is negatively impacting the performance of the threaded 

fragment pipeline. However, overall rendering performance is not 

negatively impacted since the speedup attained by the MPI data 

parallelism, which reduces the number of vertices each rank 

processes, more than makes up for the slowdown due to the large 

number of rendering threads on the node. 

Our results show that because the vertex pipeline in the llvmpipe 

driver is not threaded for large data processing the most important 

factor in overall rendering performance is MPI data parallelism 

which reduces the number of vertices processed per process. As a 

rule of thumb we found that limiting the total number of rendering 

threads per node to the number of available cores including hyper-

threads if they are available produces a reasonable result. 

 

2. SUMMARY 
We investigated the hybrid-parallel (MPI-pthread) rendering 

performance of the new OS Mesa llvmpipe driver which provides 

optimized JIT compilation of GLSL shaders and is threaded. We 

found that MPI data parallelism is the key to fast rendering 

because the driver’s vertex pipline is not threaded and that a 

reasonable choice for the number of rendering threads per node is 

the number of cores including hyper-threads if available. 

 

 


