
1. HYBRID PARALEL MPI-PTHREAD

RENDERING PERFORMANCE
Rendering images in-situ requires access to a working OpenGL

stack. Many HPC sites do not have GPUs available and of those

that do many do not support running X11 on compute nodes

which is required by many OpenGL drivers in order to create a

rendering context. At HPC sites where GPUs are unavailable for

rendering the Mesa OpenGL stack is often used. Mesa’s OS Mesa

driver implements OpenGL in software and provides an OpenGL

context without X11. In the Mesa 9.2.0 release1 the OS Mesa

driver will be replaced by Mesa’s Gallium llvmpipe software

rasterizer. The Gallium llvmpipe driver is threaded and uses

LLVM for just-in-time(JIT) OpenGL GLSL shader compilation.

In this section we investigate the threading performance of the

new OS Mesa llvmpipe driver when rendering Surface LIC in

parallel in order to identify the proper ratio of llvmlpipe rendering

threads to MPI ranks per node.

Figure 6: Single node total rendering time of a 54M triangle

surface as a function of two independent variables, MPI ranks

and llvmpipe rendering threads. The results of all 256 run

combinations are shown.

The rendering benchmarks were run on Phase 1 of the Edison

supercomputer, NERSC’s Cray XC30 Cascade system. Phase I

Edison houses 664 compute nodes with each compute node

equipped with two 8 core Xeon E5-2670 CPUs and 64GB of

DDR3 ram. Because we are interested in determining reasonable

choice of number of threads per MPI rank for in-situ rendering we

focus on measuring single node rendering performance of our

GPGPU Surface LIC implementation on a 54 million triangle

simulation dataset using 10 thousand integration steps as we co-

vary the number of MPI ranks and rendering threads per rank each

1 As of this writing Mesa 9.2.0 is not released. We used a

checkout of Git sha 062317d6 obtained from Mesa’s Git repo

hosted at freedesktop.org.

up to the number of physical cores on the compute node. We have

disabled Cray’s default CPU affinity binding and have enabled

hyper-threading as some of the runs we made use more rendering

threads than there are physical cores on the node.

Figure 7: Gant chart showing relative time each process spent

in various stages of the Surface LIC algorithm for the run

where 16 MPI ranks each with 16 rendering threads were

used.

Figure 8: Relative times of each stage in the Surface LIC

algorithm for a single MPI rank while the number of llvmpipe

rendering threads is increased.

Figure 6 shows the results of the 256 benchmark runs with the

total single node rendering time plotted on a surface as a function

of number of MPI ranks on the x-axis and number of threads per

rank on the y-axis. The absolute fastest render time was attained

by the run with 16 MPI ranks and 12 rendering threads per rank.

The Gant chart in figure 7 shows, for the run where we used 16

MPI ranks each with 16 threads, how each process spent its time

relative to the other processes. The algorithm’s run time is

dominated by the vertex processing and LIC computation stages.

Time spent in inter-process communication during compositing

and guard pixel exchange is a relatively small part of the whole

run time while the remaining stages contribute a negligible

amount of time to the overall result.

Figure 9: Relative times of each stage in the Surface LIC

algorithm for rank 0 of the set of runs where the number of

MPI ranks is varied while the number of llvmpipe rendering

threads is fixed at 16 threads per rank.

Figure 8 shows, for the set of runs where 1 MPI rank was

employed and the number of rendering threads was varied, how

the single process spent its time while rendering the surface LIC.

This figure shows the speedup attributed to the llvmpipe driver’s

threading. Note how as the number of rendering threads is

increased the time spent computing the LIC decreases while the

time spent in the vertex processing stage remains fairly constant.

The important take away from this is that the llvmpipe driver's

fragment pipeline is threaded while its vertex pipeline is not. This

is an important factor in predicting the benefit of the driver’s

threading for a given rendering algorithm. For algorithms where

rendering time is dominated by vertex processing the threaded

driver will likely result in little or no speedup.

One interesting characteristic visible in figure 6 is that as we

approach the fully oversubscribed case of 16 MPI ranks each with

16 threads for a total of 256 rendering threads the overall

rendering performance is not negatively impacted by the large

ratio of rendering threads to cores. This case’s rendering time was

within 0.5% of the fastest rendering time.

Figure 9 shows, for the set of runs where the number of MPI ranks

is varied with 16 rendering threads, how the MPI rank 0 process

spent its time during rendering. The time spent in the LIC

computation increases as the total number of rendering threads on

the node is increased beyond 32 threads. We are simply running

into the limits of the system’s processing power. The large ratio of

threads to physical cores on the node employed during this set of

runs is negatively impacting the performance of the threaded

fragment pipeline. However, overall rendering performance is not

negatively impacted since the speedup attained by the MPI data

parallelism, which reduces the number of vertices each rank

processes, more than makes up for the slowdown due to the large

number of rendering threads on the node.

Our results show that because the vertex pipeline in the llvmpipe

driver is not threaded for large data processing the most important

factor in overall rendering performance is MPI data parallelism

which reduces the number of vertices processed per process. As a

rule of thumb we found that limiting the total number of rendering

threads per node to the number of available cores including hyper-

threads if they are available produces a reasonable result.

2. SUMMARY
We investigated the hybrid-parallel (MPI-pthread) rendering

performance of the new OS Mesa llvmpipe driver which provides

optimized JIT compilation of GLSL shaders and is threaded. We

found that MPI data parallelism is the key to fast rendering

because the driver’s vertex pipline is not threaded and that a

reasonable choice for the number of rendering threads per node is

the number of cores including hyper-threads if available.

